CS 161 Introduction to Spring 2024

Question 1 61C Review

Being comfortable with manipulating the various number representations covered in 61 C will help you succeed in the memory safety unit.

Q1.1 What is the hexadecimal value of the decimal number 18 ?

Solution: 0x12

Q1.2 What is the value of $0 \times 8339 \mathrm{e} 833+0 \times 20$ in hexadecimal form?

Solution: 0x8339e853

Q1.3 What is the value of 0×550 ecdf2 + decimal 16 in hexadecimal form?

Solution: 0x550ece02

Q1.4 What is the largest unsigned 32-bit integer? What is the result of adding 1 to that number?

Solution: The largest 32-bit unsigned integer is $0 x f f f f f f f f, ~ a n d ~ y o u ~ w i l l ~ g e t ~ 0 x 00000000 ~$ if you add 1 to it (unsigned overflow).

Q1.5 What is the largest signed 32-bit integer? What is the result of adding 1 to that number?

Solution: The largest 32 -bit signed integer is 0 x 7 fffffff , and you will get 0 x 80000000 if you add 1 to it, which will be -2^{31} in decimal (signed overflow).

Q1.6 If you interpret an n-bit two's complement number as an unsigned number, would the negative numbers be smaller or larger than positive numbers?

Solution: Negative numbers would be larger than positive numbers if interpreted as unsigned since their most significant bits are set.

Q1.7 How many bytes are needed to represent char[16]?

Solution: A character array with 16 elements in it needs 16 bytes to represent because each character is 1 byte.

Q1.8 How many bytes are needed to represent int[8]?

Solution: An integer array with 8 elements in it needs 32 bytes to represent because each integer is 4 bytes.

Q1.9 For the following subparts, assume each block is $\mathbf{1}$ byte, and addresses increase from left-to-right and bottom-to-top.
In a little-endian 32-bit system, how would you represent the pointer 0xDEADBEEF?

Solution:

$0 x E F$	$0 x B E$	$0 x A D$	$0 x D E$

Q1.10 In a little-endian 64-bit system, how would you represent the pointer 0xDEADBEEF?

Solution:

$0 \times \mathrm{xF}$	$0 \times B E$	$0 \times \mathrm{AD}$	$0 \times \mathrm{DE}$	0	0	0	0

Q1.11 In a little-endian 32-bit system, how would you represent the char array "ABCDEFGH"?

Solution:

E	F	G	H
A	B	C	D

